
Team Description Paper robOTTO
RoboCup@Work 2022

Christoph Steup, Hauke Petersen, Leander Bartsch, Inga Brockhage, David
Hausmann, Niklas Harriehausen, Adrian Köring, Franziska Labitzke, Hanna

Lichtenberg, Wiebke Outzen, Fabian Richardt, Jurek Rostalsky, Sanaz
Mostaghim, Arndt Lüder, and Stephan Schmidt

Otto-von-Guericke University, 39106 Magdeburg, Germany
{steup@ovgu.de,

WWW: http://www.robotto.ovgu.de/

Abstract. Team robOTTO is the RoboCup@Work League team of the
Otto-von-Guericke University Magdeburg, formerly participating in the
Robocup Logistics League since its founding in 2010. In our team, we
combine the expertise from Computer Science, Electrical and Mechanical
Engineering to solve @Work’s unique challenges while fostering knowl-
edge exchange between the different leagues.

Keywords: RoboCup@Work, robOTTO, RoboCup2022

1 Introduction

robOTTO was founded as a RoboCup Logistics[5] team in 2010 by nine stu-
dents from different fields, enabling exchange of knowledge and views between
the members. After achieving second place 2010 in Singapore, the team continued
to attend following RoboCup competitions with further successes in 2012 (4th
place) and 2013 (2nd place). The transition from RoboCup Logistics to @Work
League helped to broaden the expertise of the team and laid the foundation
for the Crossover Challenge[8] at the @Work League, resulting in a first place
at world cup in Leipzig 2016. In 2012, a first attempt at a second competition
resulted in an 8th place in the 2D Soccer Simulation League. With regard to
broad rule and equipment changes in the Logistics League in 2015 we decided to
participate in the @Work League[4], as the Computer Science Faculty already
had some experience on the KUKA youBots[1], thus providing a pool of ex-
perienced students and easy integration into courses and research projects. The
team competed in the world cup 2015 in China and reached 6th place followed by
the world cup in Leipzig in 2016, where we scored 4th. 2017 was very successful
for us, resulting in a third place at the GermanOpen and a second place at the
world cup in Japan. In Montreal (Canada) the team achieved the first place in
the Arbitrary Surface Challenge. In the last WorldCup in Sydney (Australia)
the team achieved the Vice-World-Champion title again. In 2020, no real-world
cup was done, and the team achieved a best-presentation award in the Virtual



2

RoboCup Asia Pacific Open (VRCAP). In the RoboCup@Home competition in
2021, which was held completely virtual, the team achieved the 3rd place. Addi-
tionally, the teams’ effort in organizing the competition and the streaming was
recognized by incorporating Franziska Labitzke and Hauke Petersen in the Orga-
nization Committee of the league, Leander Bartsch in the Technical Committee
and Christoph Steup in the Executive Committee. Additionally, Christoph Steup
is the current main maintainer of the new official Referee Box of the league.

2 Team Structure

Task Name Field / Role

Organisation

Sanaz Mostaghim Responsible Professor
Arndt Lüder Liason to Mechanical Engineering
Stephan Schmidt Liason to Mechanical Engineering
Christoph Steup Team Leader (EC-Member)
Hauke Petersen Co-Team Leader (OC-Member)
Franziska Labitzke Public Relations Officer (OC-Member)

Navigation Niklas Harriehausen Mechanical Engineering

Hardware
Leander Bartsch Electrical Engineering (TC-Member)
Inga Brockhage Electrical Engineering

Recognition Adrian Köring Computer Vision

RobotCoordination

Wiebke Outzen Computer Science
Fabian Richardt Computer Science
Jurek Rostalsky Mathematics
Hanna Lichtenberg Computer Science
David Hausmann Computer Science

Table 1. Overview of robOTTO team members by task and field of studies or role

Currently, the team consists of 12 active members and 8 new members cur-
rently in training, whereas the professors are not involved in the development
and only provide guidance and organizational support. The team is composed
of students, who will leave the team after finishing their studies, as well as
postgraduates, which allows the team to combine fresh ideas and approaches,
with the experience of the veterans. Depending on the new members and their
backgrounds, the team can largely benefits from a diverse set of expertise. The
current team members provide a large spectrum of topics from cybernetics and
computer science to electrical engineering to the team as shown in Table 1. The
new students provide new ideas and also new challenges to the team. Currently,
the new members try to ease the use of the robot in the competition to minimize
human errors and improve the efficiency of the setup process for new arenas to
lessen the time till the first training run.



3

3 Robot Description

The standard KUKA youBot does not provide any sensory equipment. Modi-
fication were necessary to use the robot in the @Work league. To minimize effort
and maximize results most of the additions are COTS, used in the robotics
community. Our modification relates to the sensory equipment consisting of an
additional camera and two laser scanners and to the manipulation system ex-
tended with a specialized gripper. Additionally, we switched to a more powerful
PC.

Fig. 1. Modified KUKA youBot

3.1 Changes to the standard Platform

Camera We use an Intel RealSense RGB-D camera, which provides registered
point clouds as well as an RGB-D image. Currently, we focus on the color data for
recognition and use the depth image as a highly flexible distance sensor. Around



4

the lenses and projectors of the RealSense we mounted an oval-shaped ring
of LEDs to improve lighting conditions and enable a reliable object detection
and classification. During navigation, the RealSense camera is used to detect
barrier tape.

Gripper The objects of the @Work league have varying shapes and sizes. After
preliminary tests, we observed that the normal metal gripper on the KUKA
youBot cannot reliably handle many of these objects. Our current gripper is
based on a custom 3D-Printed mount using a single servo by Dynamixel and
Finray-fingers by Festo, which are controlled by an embedded board. Current
development focus on correctly identifying and handling error cases like the
loss of an object. Additionally, we aim to improve the grasping of not perfectly
aligned objects.

Computing and Connections We updated our Intel NUC to a newer 8th
generation version providing 4 real cores with 45W TDP to enable more complex
algorithms for navigation, path planning and task optimization. We now use two
Teensy ARM-Cortex M4 powered embedded boards to integrate the gripper and
our custom power supply. The hardware and software architecture is modularized
through defined interfaces to provide a stepping stone for students inexperienced
with programming to experiment without needing the whole development stack
used on the main robot.

Laser Scanner Mounting Brackets The team uses Hokuyo URG-04LX
laser scanners. These provide appropriate distance measurements in a 240◦ ra-
dius with a maximum distance of 5.5 m. A reliable localization is possible if the
laser scanners are exactly parallel to the ground. To this end, the team designed
reliable, adjustable mounting brackets, which were 3D printed by the team to
prevent tilt errors even at the edge of the scanner’s measurement range and
shield the expensive sensors in the case of accidental collisions.

Replacement of the Upper Case The newly designed and manufactured
upper case completely replaces the old top cover of the YouBot. It provides
the option to access the underlying electronics easy, while extending the space
inside the robot. This enables the possibility of another Intel Core i7 NUC, the
power supply of the grippers and our USB3 hub to be stored inside the robot,
see 3.1. Furthermore, the inventory, emergency switch and arm have pre-build
mountings on the new case. Thanks to multiple mounting holes, the inventory
can be offset, and additional parts can be added easy to the surface. The new
cover proved very successful in the competition of 2019 and 2021.

Lithium Polymer-based Battery System The original lead-based batteries
of the YouBot have two major drawbacks. Firstly, they are incredibly heavy,



5

which increases the transportation cost when flying. Secondly, their contained
energy is rather scarce compared to the power necessary for all the components.
Currently, our bot lasts for max 30 minutes, which is quite limited. Because of
these reasons, we decided to switch to Lithium-Polymer-based batteries. But in-
stead of using single cells, we use Bosch tool batteries, which are widely available
and raise no suspicion at the airport. To this end, we integrated two of-the shelf
buck-boost DC-DC converters for 12V and 24V as well as a customly designed
PCB to hold voltage and current measurement, as well as emergency, switches
to cut the different power rails. The current setup uses two batteries in parallel,
which allows us to Hot-Swap the batteries without powering the bot down and
up. Because of the ongoing Corona-Pandemic, we could not test the new sys-
tem in a real environment, but our observation suggest a significant increase in
endurance.

4 Software Architecture

In this section, we want to describe the main software components and how
they interact. We use the Robot Operating System (ROS)[6] in the Melodic
version running on Ubuntu 18.04 LTS. The main advantages are the commu-
nication abstraction and the great number of easy-to-use debug tools.

4.1 Overview

Fig. 2 shows the interaction of our software components. They are described in
detail in the following sections.



6

@Work
RefBox

Optimizer

Graphical
State

Machine

Navigation
State

Machine

MoveIt!
Wrapper

Deep Vision
Barrier Tape

Detection
Gripper
Control

move base AMCL MoveIt!

Realsense
KUKA
YouBot

GripperHokuyo Lidar

Fig. 2. Overview of the main software components of the robOTTO @Work framework.



7

State-Machine and Optimizer Core elements of the robot software archi-
tecture are the optimizer and the state-machine, which are responsible for coor-
dinating the other modules of the robot like vision, navigation and arm move-
ment. The transportation tasks, which the robot has to fulfil, are generated by
the @work referee box of the league and transferred to the robot. On the robot
side, the receiver node is used for processing and forwarding those messages to
the optimizer. The optimizer searches for a sequence of transport tasks which
reaches the maximum score within the time limit. Subsequently, it generates
SubTasks as an input for the state machine. Typical SubTasks are picking up an
object, placing an object or moving the robot to a workstation.

The state machine contains a logic for every SubTask. The logic determines
a graph of parametrized actions which are necessary to perform the SubTask.
Common actions are the MoveAction, ArmAction and VisionAction. They con-
trol the sub-state machines of the corresponding robot modules. For instance, a
simplified PickLogic consists of following actions:

1. ArmAction moves the arm to the pose for barrier tape recognition.
2. MoveAction moves the robot to a specified workstation.
3. ArmAction moves the arm to the pose for object recognition.
4. DetectAction looks for the specified object on the workstation.
5. ArmAction picks up the object which was localized by the vision and place

it in the inventory.

Because a reliable state machine is critical for the success of a robot performance,
it is one of the most intensively unit tested modules of the robot.

World Model The world cup 2017 in Leipzig showed that the complexity
of the tasks and the environment is difficult to handle in our current software
architecture. To incorporate additional information on the state of the arena or
the robot, lots of changes to code and interfaces were necessary. To mitigate
this engineering issue, we decided to manage the information on the world in
a central component. The resulting world model component allows us to store,
track and replay changes to the robots and the arena’s state. Additionally, we
added support to add and modify the data in the world model of a specific task
and visualize it. The major benefit of this approach is the stability of interfaces
between our functional SubTask components, as well as the centralized point
for team members to add and request information on the world. Finally, the
visualization tool gives us better insights into the robot’s current behavior and
choices to ease debugging.

Deep-Learning-based Vision - Deep Vision We currently only use 2D im-
ages for object detection, even though the RealSense also provides 3D data. Our
object detection system is based on the TensorFlow Object Detection API. We
created a custom bootstrapping and augmentation system to generate additional
training data. The major work in this system was the manual generation of train-
ing data. To ease the process, we developed a custom tool to check the detection



8

and classification output and generate manually corrected training samples. To
only addition to the original detection API is an additional object orientation
detection code to also output a 2D rotation of the object on the workstation.

Path Planning for Industrial Robots The navigation of industrial robots
has to be developed with multiple competing influences in sight, as fast move-
ment and collision avoidance are both critically important to successfully par-
ticipate in RoboCup@Work. Other factors are more subtle, like predictability of
behavior and easy maintenance and adaptability. The last two points are espe-
cially important in the context of RoboCup as a competition of students, where
team members and responsibilities switch regularly and members have to be able
to familiarize them self with the code, often on a short notice.

The current navigation stack used by robOTTO supports two different ap-
proaches. The first approach uses the DWA-Planner (Dynamic Window
Approach)[3] which is open-source code and the standard planner for holo-
nomic platforms in ROS. Since, it is quite complex with many configurable
parameters, we use a slightly modified parameter-set which was made available
publicly by the b-it-bots team for usage with the KUKA youBot.

The second approach is a minimal implementation of a local planner which
relies on the global planner for object avoidance to keep the complexity and fea-
ture duplication down. It was developed after preliminary tests with the DWA-
Planner showed unpredictable and often oscillating behavior depending on a
multiple factors like CPU load and floor conditions.

Integration of the MoveIt! Trajectory and Kinematics Stack The pre-
viously used kinematics stack for the manipulator used by the team, SAMIA,
was built by former member Stefan as a by-product of his Master’s Thesis and
subsequently adapted for the @Work competition. But with Stefan gone, we now
face problems maintaining and extending the codebase. This led to the decision
to abandon our own stack in favor of MoveIt! [2]. MoveIt! is an open-source
motion planning framework originally developed by Willow Garage, which unifies
motion planning kinematics, collision checking and dynamic three-dimensional
environment representations. As it was initially developed to be used with ROS,
it offers a high degree of integration with existing packages and tools, such as
RViz. The stack’s incorporation into our code, as well as the creation of the
arm-state-machine Figure 2 and interfacing with our main state machine, was
done by Hauke. Since then, it proved to be a viable alternative to our previous
solution and had successfully been used at GermanOpen 2016 in Magdeburg
and RoboCup 2016 in Leipzig. One of the stack’s issues on our platform was
the calculation time required to generate a valid movement trajectory. For this
purpose, we have developed a ROS package which allows caching static trajec-
tories (e.g. when placing an object in one of the inventory slots) and integrate
them in dynamic trajectory paths to speed up the calculations. Currently, we
are working on the integration of MoveIt’s Planning Scene to allow complex mo-



9

tion planning in environments with obstacles. We want to use this approach for
”tight” spaces like shelves or workstations with walls around it.

Barrier Tape Detection The Barrier Tape Detection is asked to spatially
locate barrier tape strips given a camera image and position. To achieve this,
we first detect the barrier tape in the image. This is done using a semantic
segmentation of the camera image also used for object detection and recognition.
However, in this case a convolutional neural network is used, which combines
the task of filtering, segmentation and recognition. We used Tensorflow to
implement the network and train it. The output of the network is an image
of white pixels, where the barrier tape was detected. The training samples are
generated using images of the used barrier tapes in the competition overlaid on
various background images and lighted by Blender. To get the world coordinates
of the barrier tape, we cast rays from the camera through the white pixels in
the mask into the scene and find intersections with the ground plane. All such
intersection points finally form the resulting point cloud, which is fed to the
navigation stack as an additional sensor. The only manually configured part
of the Barrier Detection is the calibration of the mapping of the 2D camera
coordinates to the 2D map coordinates of the navigation.

Graph-based Visual State-Machine We finished the integration of FlexBE [7]
as our new state-machine description mechanism. All our old state-machine code
as well as the previously separated RTT-State-Machine are now encoded in the
new system. As a byproduct, we simplified the state-machine for the manipula-
tor and integrated extended planning capabilities. The new state-machine still
needs to be evaluated in realistic contexts of competitions to see if it fulfills the
expectations of more flexible and faster adaptations on site.

5 Future Software Components

The following components are currently worked on and may be used in the
WorldCup 2022 if the development is finished, and they are sufficiently tested.

5.1 New Camera and Vision Pose

We bought the new and probably last Intel RealSense L515 and are currently
aiming to integrate it in our manipulator. However, the new vision concept is fun-
damentally different by using a different vision pose as well as a different mount
point for the camera, allowing more efficient vision operations. Additionally, the
new system shall allow us to handle shelves and high tables.

5.2 Specialized Near-Field Localization

We are currently working on a specialized near-field localization mechanism to
enable precise localization of the robot close to workstations to remove our spe-
cialized navigation state-machine, which moves manually when very close to



10

workstations. The new approach will enhance AMCL using semantic localization
of tables and fuse the resulting pose information using an Unscented Kalman
Filter.

5.3 New Optimizers

To speed up and enhance the quality of the resulting behavior of the robot, we de-
velop two new optimizers using a Branch-and-Bound and a Genetic-Algorithm-
based approach. These optimizers shall allow us to handle dynamic failures of
sub-tasks within the run and provide, in general, better and faster results than
the old one.

6 Conclusion

With the influx of new team members and the continued participation by last
year’s members, we are cautiously optimistic that we will be able to build upon
the work done last year. Expected changes to the rules of the competition
mandate some overhauls of components like manipulation movement and ta-
bles height estimation. The last participation left us with a code base, solving
most of the tasks of the @work league. This enables us to focus this year on
testing and improving the robustness of the working solutions, while adapting
them to the new rules.

Acknowledgements

We would like to thank Sanaz Mostaghim, Chair of Computational Intelligence
for her support during the year and providing us with access to tools and the
necessary facilities for storage and testing. The team and all former members
would also like to thank Arndt Lüder for his engagement and support since our
founding in 2010.

References

1. Rainer Bischoff, Ulrich Huggenberger, and Erwin Prassler. Kuka youbot-a mobile
manipulator for research and education. In Robotics and Automation (ICRA), 2011
IEEE International Conference on, pages 1–4. IEEE, 2011.

2. Sachin Chitta. Moveit!: an introduction. In Robot Operating System (ROS), pages
3–27. Springer, 2016.

3. Dieter Fox, Wolfram Burgard, and Sebastian Thrun. The dynamic window approach
to collision avoidance. IEEE Robotics & Automation Magazine, 4(1):23–33, 1997.

4. Gerhard K Kraetzschmar, Nico Hochgeschwender, Walter Nowak, Frederik Hegger,
Sven Schneider, Rhama Dwiputra, Jakob Berghofer, and Rainer Bischoff. Robocup@
work: competing for the factory of the future. In Robot Soccer World Cup, pages
171–182. Springer, 2014.



11

5. Tim Niemueller, Daniel Ewert, Sebastian Reuter, Alexander Ferrein, Sabina Jeschke,
and Gerhard Lakemeyer. Robocup logistics league sponsored by festo: a competitive
factory automation testbed. In Automation, Communication and Cybernetics in
Science and Engineering 2015/2016, pages 605–618. Springer, 2016.

6. Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, and Andrew Y Ng. Ros: an open-source robot operating system. In
ICRA workshop on open source software, volume 3.2, pages 1–6. Kobe, 2009.

7. Philipp Schillinger. An approach for runtime-modifiable behavior control of hu-
manoid rescue robots. Master’s thesis, Technical University Darmstadt, 2015.

8. Sebastian Zug, Tim Niemueller, Nico Hochgeschwender, Kai Seidensticker, Martin
Seidel, Tim Friedrich, Tobias Neumann, Ulrich Karras, Gerhard Kraetzschmar, and
Alexander Ferrein. An integration challenge to bridge the gap among industry-
inspired robocup leagues. In RoboCup Symposium, pages 1–12, 2016.


