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Introduction



Introduction

A RoboCup@Work scenario consists of several elements, e.g.

• the environment,

• the objects that affect navigation,

• the objects that are to be manipulated,

• the objects with which robots interact,

• the task to be performed by a team etc.
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Introduction

There are several assumptions about the kind of robots used in the

competition, e.g.

The robots use sensors to obtain information about their

whereabouts in the environment and the task-relevant objects.

Often used sensors are

• laser finders,

• color CCD cameras and

• 3D cameras (such as the Kinect camera or the Intel

Realsense camera).

The design of the scenario should be such that the robots can

solve the tasks safely and robustly using these sensors.
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Depth sensor



Structured-light 3D scanner

Figure 1: Intel R© RealSense
TM

camera (F200).
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Intel R© RealSense
TM

camera

Technical specifications:

RGB video resolution

Full HD 1080p (1920 x 1280).

IR depth resolution

VGA (640 x 480).

Image frame rate

30 fps (RGB), 60 fps (IR depth).

Field of view

77◦(RGB), 90◦(IR depth).

Range

0.2 m - 1.2 m.

Laser projector

First class IR laser projector.

Input

5 V.

USB port

USB 3.0.
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Intel R© RealSense
TM

camera

Range

0.2 m - 1.2 m.

i.e. there are various ranges and accuracies possible depending on specific

algorithms.

The current camera design is the following:

• The RealSense camera is mounted on the KUKA robot arm.

• The RealSense camera’s minimum distance to an object (M30, M20

etc.) is approx. 0.30 m.

• The RealSense camera has a static top-down perspective to the

table with objects.
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Intel R© RealSense
TM

camera

Figure 2: Robot arm with mounted RealSense camera.
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Principle of a structured-light 3D scanner

• Any spatio-temporal pattern of light is projected on a surface.

• Observed patterns can be used for a reconstruction of the surface

shape.

• Geometric distortions by optics and perspective must be

compensated by a calibration of the measuring equipment.

Figure 3: Complex projected light pattern on human hands.
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Single light stripe scanning

Imagine the following simple case to scan a scene:

• Project a single stripe of laser light.

• Scan it across the surface of the object.

This is a very precise version of structured light scanning!

It is good for high resolution, but it needs many images and takes time.
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Questions

• How to achieve faster acquisitions?

• Multiple stripes has to be projected simultaneously.

• How to solve the correspondence problem: Which stripe is which?

• Binary coded light striping or gray/ color coded light striping is

recommended. The correspondence problem is solved by searching

the pattern in the camera image.
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Challenges

During every RoboCup@Work object manipulation task the following

difficulties are observed:

• Reflective or transparent surfaces. Reflections go either away from

the camera or right into its optics. The dynamic range of the

camera is exceeded.

• Double reflections and inter-reflections. The stripe pattern is

overlaid with unwanted light. Reflective cavities and concave objects

are difficult to handle.
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Challenges

Figure 4: Point cloud with two aluminuim profiles of RoboCup@Work.
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Solutions

A 1D diffuser between the projector and the object to be scanned could

handle reflective objects [2].

In the computer vision community structured light patterns are designed

that are resilient to individual global illumination effects [1].

Figure 5: Reconstruction of a shower curtain with different light patterns.1

1Image from graphics.cs.cmu.edu
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http://graphics.cs.cmu.edu/projects/StructuredLight3DScanning/Translucent.html


Questions

What could be further challenges?
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Challenges

Figure 6: Dataset with sparse outliers.2

2Image from pointclouds.org
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http://pointclouds.org/documentation/tutorials/statistical_{outlier.php}


3D object recognition



Overview

Figure 7: Example of local and global 3D recognition pipelines in PCL.3

3Image from pointclouds.org
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http://www.pointclouds.org


Segmentation

Segmentation consists of breaking the cloud apart in different groups of

points that share certain characteristics.

Our 3D plane segmentation is based on a plane model fitting. We use an

iterative method called RANSAC (Random Sample Consensus).

The objects’ cluster extraction happens in an Euclidean sense.
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Segmentation

Figure 8: Firstly, we segment and remove the 3D plane. Then, the objects’

points are separated.
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Model fitting (RANSAC)

Figure 9: Data points before and after fitting of a line model.4

4Image from robotica.unileon.es
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http://robotica.unileon.es


Descriptor

Descriptors are complex and prezise signatures of a point, that encode

information about the surrounding geometry.

The purpose is to identify a point across multiple point clouds, no matter

the noise, resolution or transformations.

The result of a descriptor is binned into an histogram.

Figure 10: Finding correspondences between point features of two clouds.5

5Image from pointclouds.org
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http://pointclouds.org/


Local descriptor

Local descriptors ...

• are computed for keypoints that you give as input.

• have no notion of what an object is, they just describe how the local

geometry is around that point.

• are used for object recognition and registration.

Figure 11: 3D keypoints are distinctive and repeatable.6

6Image from pointclouds.org
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http://www.pointclouds.org/assets/icra2013/pcl_features_icra13.pdf


Local descriptor

Figure 12: Matching descriptions yields point-to-point correspondences.7

7Image from pointclouds.org
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http://www.pointclouds.org/assets/icra2013/pcl_features_icra13.pdf


Global descriptor

Global descriptors ...

• encode object geometry.

• are not computed for individual points, but for a whole cluster that

represents an object.

• are used for object recognition and pose estimation.

Figure 13: Segmentation is required in order to get object clusters.8

8Image from pointclouds.org
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http://www.pointclouds.org/assets/icra2013/pcl_features_icra13.pdf


Local vs global descriptors

Local descriptors

• are well suited to handle clutter and occlusions.

Global descriptors

• need complete information concerning the surface.

• are more descriptive on objects with poor geometric structure.
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Questions

What kind of descriptor would you prefer for 3D object recognition at

RoboCup@Work? Why?
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Local vs global descriptors

RoboCup@Work objects are characterized by a relatively poor geometric

structure.

robOTTO uses global descriptors, e.g. the ESF, to handle these objects.

(a) M30 (b) F20 20 B (c) S40 40 G (d) V20

Figure 14: A subset of the RoboCup@Work objects.
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Ensemble of Shape Functions descriptor

The Ensemble of Shape Functions descriptor (ESF) ...

• describes distances, angles and area of cloud’s points.

• does not require normal information.

• is robust to noise and incomplete surfaces.

Figure 15: An ESF histogram of M30’s partial view. It’s an ensemble of 10

64-bin sized histograms of shape functions.
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Ensemble of Shape Functions descriptor

The algorithm ...

• uses a voxel grid as an approximation of the real surface.

• iterates through all the points in the cloud, whereby 3 random

points are chosen for every iteration.

• computes the shape functions for these points.

Figure 16: Calculation of the shape functions on a point cloud of a mug.9

9Image from Wohlkinger et al. [3]
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Ensemble of Shape Functions descriptor

Figure 17: Left: point distance distributions; Middle: angle distributions;

Right: area spanned by triplets of sampled points. Measurements are classified

into ”on the surface”, ”off surface” as well as a combination of ”both”,

respectively depicted as green, red and blue lines in the left part of the figure

[3].
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Questions

• Which advantages provides the design of the ESF descriptor?

• ESF is invariant to translation and rotation.

• Do you have a hint what could possibly go wrong during a 3D object

recognition based on ESF descriptors? Why?
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Training

During a training stage, objects are placed on a rotary table.

Histograms are computed for different partial views of all the objects we

want to recognize and saved into *.pcd files.

A ROS node is written to summarize the training data into

training data.list and training data.h5.

A K-d tree as a index structure is created for quick nearest-neighbor

lookup (kdtree.idx).
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K-d tree

A k-d tree, or k-dimensional tree, ...

• is a data structure used in computer science for organizing some

number of points in a space with k dimensions.

• is very useful for range and nearest neighbor searches.

We use FLANN to perform fast approximate nearest neighbor (NN)

searches in high dimensional spaces.
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http://www.cs.ubc.ca/research/flann/


K-d tree

Figure 18: An example of a 2-dimensional k-d tree.10

10Image from https://en.wikipedia.org
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https://en.wikipedia.org


Pose estimation

Currently, the RoboCup@Work objects are lying on its side on a table.

We get the object’s x axis (red) from the table normal.

A Principial Component Analysis provides the eigenvector with the

largest eigenvalue that is used to compute the z axis (blue).

The y axis (green) is computed by x × z.

Figure 19: Objects with their coordinate frames.
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Summary: Global pipeline used by team robOTTO
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Questions?
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